Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Fang Li, Ya-Qing Feng* and Mian Xu

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
|xf7212@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.049$
$w R$ factor $=0.108$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see
http://journals.iucr.org/e.

4-(4-Chlorophenyl)-3-(2,6-dichlorophenyl)-1,7-dioxa-2-azaspiro[4.4]non-2-en-6-one

The title compound, $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{NO}_{3}$, was synthesized by the intermolecular [3+2]-cycloaddition of 2,6-dichlorobenzonitrile oxide and 3-(4-chlorobenzylidene)dihydrofuran-2-one. A spiro junction in the molecule links an isoxazoline ring and a dihydrofuran-2-one ring. Both rings are non-planar, with envelope conformations.

Comment

Spiro-compounds represent an important class of naturally occurring substances, characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are important processes for the construction of spiro-compounds (Caramella \& Grunanger, 1984). The molecular structure of the title compound, (I), is illustrated in Fig. 1.

(I)

A spiro junction in the molecule links an isoxazoline ring and a dihydrofuran-2-one ring. The isoxazoline ring ($\mathrm{O} 1 / \mathrm{N} 1 /$ $\mathrm{C} 6 / \mathrm{C} 5 / \mathrm{C} 2$) has an envelope conformation. Atoms O1/N1/C6/ C5 form an almost perfect plane [mean deviation from this plane is 0.0053 (3) \AA A. Spiro-atom C2 lies 0.3309 (3) \AA from this plane and forms the flap of the envelope. The dihedral angle between plane $\mathrm{C} 5 / \mathrm{C} 2 / \mathrm{O} 1$ and the mean plane $\mathrm{O} 1 / \mathrm{N} 1 / \mathrm{C} 6 /$ C 5 is $21.1(4)^{\circ}$. This is similar to the conformation found for isoxazoline rings in the literature $(\mathrm{Li}$, Feng $\& \mathrm{Gu}, 2003 ; \mathrm{Li}$, Feng, Zhuang \& Hu, 2003). The O1-N1, C6-N1 and O1C 2 bond lengths are 1.423 (3), 1.276 (4) and 1.466 (3) Å, respectively, and the angles $\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 6$ and $\mathrm{C} 2-\mathrm{O} 1-\mathrm{N} 1$ are $109.2(2)$ and $108.3(2)^{\circ}$, respectively. These values compare with the values of 1.425 (4), 1.268 (4) and 1.440 (4) \AA, and 109.0 (3) and 110.5 (2) $)^{\circ}$ reported in the literature (Li, Feng, Zhuang \& Hu, 2003). The torsion angle $\mathrm{C} 6-\mathrm{N} 1-\mathrm{O} 1-\mathrm{C} 2$ is $12.6(3)^{\circ}$. The dihedral angle between plane $\mathrm{O} 1 / \mathrm{N} 1 / \mathrm{C} 6 / \mathrm{C} 5$ and the phenyl ring ($\mathrm{C} 7-\mathrm{C} 12$) is $99.2(4)^{\circ}$, and that between plane $\mathrm{O} 1 / \mathrm{N} 1 / \mathrm{C} 6 / \mathrm{C} 5$ and the phenyl ring ($\mathrm{C} 13-\mathrm{C} 18$) is $109.9(4)^{\circ}$. The dihedral angle between phenyl rings $\mathrm{C} 7-\mathrm{C} 12$ and $\mathrm{C} 13-\mathrm{C} 18$ is 95.1 (4) ${ }^{\circ}$. The dihydro-furan-2-one ring ($\mathrm{C} 1-\mathrm{C} 4 / \mathrm{O} 3$) has an envelope conformation; atoms $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{O} 3 / \mathrm{C} 4$ lie in a plane, the mean deviation from this plane being 0.0132 (3) Å. Atom C3 lies 0.5384 (4) \AA from

Figure 1
The molecular structure of (I), with displacement ellipsoids at the 30% probability level, and the atom-numbering scheme.

Figure 2
The crystal structure of (I), viewed down the a axis.
this plane and forms the flap of the envelope. The dihedral angle between planes $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4$ and $\mathrm{C} 2 / \mathrm{C} 1 / \mathrm{O} 3 / \mathrm{C} 4$ is $34.4(4)^{\circ}$. The $\mathrm{O} 2-\mathrm{C} 1, \mathrm{O} 3-\mathrm{C} 4$ and $\mathrm{O} 3-\mathrm{C} 1$ bond lengths are 1.197 (4), 1.450 (4) and 1.345 (4) \AA, respectively, and bond angles O 2 $\mathrm{C} 1-\mathrm{O} 3, \mathrm{C} 1-\mathrm{O} 3-\mathrm{C} 4$ and $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ are 121.9 (3), 110.2 (3) and 101.2 (3) ${ }^{\circ}$, respectively. These values compare well with those of 1.197 (2), 1.443 (2) and 1.342 (2) \AA, and 121.2 (18), 110.9 (15) and $102.48(15)^{\circ}$ reported in the literature (Guzei et al., 2002).

Experimental

A mixture of 2,6-dichlorobenzonitrile oxide (2 mmol) and 3-(4chlorobenzylidene) dihydrofuran-2-one in dry chloroform (30 ml) was heated under reflux for 4 d . After evaporation of the solvent, the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate $=8: 1$) to give the title compound, (I). M.p. 464-465 K; IR (KBr): $1784(\mathrm{C}=\mathrm{O}), 1600,1581(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta=1.92(1 \mathrm{H}, m), 2.44(1 \mathrm{H}, m), 4.26(1 \mathrm{H}, m), 4.51$ $(1 \mathrm{H}, m), 5.73(1 \mathrm{H}, s), 7.17-7.33(7 \mathrm{H}, m) .20 \mathrm{mg}$ of (I) were dissolved
in 15 ml chloroform, and colourless single crystals, suitable for X-ray analysis, were obtained by slow evaporation at room temperature over 15 d .

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{NO}_{3}$
$M_{r}=396.64$
Monoclinic, C2/c
$a=12.600$ (6) A
$b=20.177$ (9) \AA
$c=14.202$ (6) \AA
$\beta=104.768(8)^{\circ}$
$V=3491$ (3) \AA^{3}
$Z=8$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.937, T_{\text {max }}=0.968$
8872 measured reflections
$D_{x}=1.509 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 699
reflections
$\theta=3.5-23.3^{\circ}$
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.20 \times 0.10 \times 0.06 \mathrm{~mm}$

3078 independent reflections
1702 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-14 \rightarrow 14$
$k=-24 \rightarrow 21$
$l=-11 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.108$
$S=1.01$
3078 reflections
226 parameters

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.084 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.21 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 3-\mathrm{C} 10$	$1.742(4)$	$\mathrm{O} 1-\mathrm{C} 2$	$1.466(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.276(4)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.197(4)$
$\mathrm{N} 1-\mathrm{O} 1$	$1.423(3)$	$\mathrm{O} 3-\mathrm{C} 1$	$1.345(4)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{O} 1$	$109.2(2)$	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 3$	$121.9(3)$
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{C} 2$	$108.3(2)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 5$	$104.3(2)$
$\mathrm{C} 1-\mathrm{O} 3-\mathrm{C} 4$	$110.2(3)$		
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{O} 1-\mathrm{C} 2$	$12.6(3)$	$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$89.5(3)$

The H atoms were included in the riding-model approximation with displacement parameters related to the atoms to which they were bonded.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Caramella, P. \& Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, Vol. 1, pp. 291-312. New York: Wiley.
Guzei, I. A, Langenhan, J. M. \& Chung, Y. J. (2002). Acta Cryst. E58, o65-o66.
James, D., Kunze, H. B. \& Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.
Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H. Ishibashi, M., Sasaki, T. \& Mikamiy, Y. (1991). Tetrahedron. 47, 6617-6622.
Li, X.-F., Feng, Y.-Q. \& Gu, Y.-F. (2003). Acta Cryst. E59, o330-o331.
Li, X.-F., Feng, Y.-Q., Zhuang, J.-P. \& Hu, X.-F. (2003). Acta Cryst. E59, o247o249.
Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.

